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1  For real values of #, the non-singular matrices A and B are such that

A":(t 5) and B—‘:(2 _t).

2 8 3 -1
(i) Determine the values which 7 cannot take. [2]
(ii) Without finding either A or B, determine (AB)_1 in terms of z. [2]

2 Use de Moivre’s theorem to express cos 36 in terms of powers of cos 8 only, and deduce the identity
cos 6x = cos2x(2cosdx — 1). [5]

3  The curve C has equation y = .
x“+1

(i) Write down the equation of the asymptote of C and the coordinates of any points where C meets
the coordinate axes. [2]

(ii) Show that the curve meets the line y = k if and only if —1 < k < 1. Deduce the coordinates of the
turning points of the curve. [5]

[Note: You are NOT required to sketch C.]

=

Let f(n) =2(5"' + 1) forintegersn=1,2,3, ....
(i) Prove that, if f(n) is divisible by 8, then f(n + 1) is also divisible by 8. [3]

(ii) Explain why this result does not imply that the statement
‘f(n) is divisible by 8 for all positive integers »’

follows by mathematical induction. [1]

5  The curve S has polar equation r = 1 + sin 6 + sin® 6 for 0 < 6 < 2.

d
(i) Determine the polar coordinates of the points on S where d—; =0. [5]
(ii) Sketch S. (3]
6 G is the set {2, 4, 6, 8}, H is the set {1, 5, 7, 11} and X, denotes the operation of multiplication
modulo 7.
(i) Construct the multiplication tables for (G, x,,) and (H, x,,). [2]

(ii) By verifying the four group axioms, show that G and H are groups under their respective binary
operations, and determine whether G and H are isomorphic. [6]

[You may assume that X is associative.]
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7  Relative to an origin O, the points P, Q and R have position vectors
p=i+2j-7k, q=-3i+4j+k and r=06i+4j+ok

respectively.
(i) Determine p X q. [2]

(ii) Deduce the value of o for which

(a) OR is normal to the plane OPQ, [1]
(b) the volume of tetrahedron OPQR is 50, [3]
(¢) R lies in the plane OPQ. [2]
8 (i) Determine x and y given that the complex number z = x + iy simultaneously satisfies
|z—1/=1 and arg(z+l):%7r. [4]

(i) On an Argand diagram, shade the region whose points satisfy

1<|z-1]<2 and éﬂSarg(z+l)<%7r. [6]

9 (i) Show that there is exactly one value of k for which the system of equations

kx+ 2y+kz=4
3x+10y+2z=m
(k—1)x— 4y+ z=k

does not have a unique solution. [4]
(ii) Given that the system of equations is consistent for this value of &, find the value of m. [4]
(iii) Explain the geometrical significance of a non-unique solution to a 3 x 3 system of linear equations.

(2]

10 The roots of the equation x*—2x° +2x* +x -3 =0are a, B, y and 8. Determine the values of

() o +p*+y°+ 6, [2]
1 1 1 1

(II)E+E+;+5, [2]
Gii) o« + B+ + 8. [4]

[Questions 11, 12 and 13 are printed on the next page.]
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11 (i) Given that y = —4 when x = 0 and that

dy 2
— —y=e"+3,
ax )¢
find the value of x for which y = 0. [7]
(if) Find the general solution of
¢y  dy >
— - +4y=e™ +3,
o TS
given that y = cx’e*" + d is a suitable form of particular integral. [7]

12 (i) (a) Use the method of differences to prove that

nn+1) k N+1
n=k
=] 1
(b) Deduce the value of Z and show that Z — <. [3]
n(n+ ) b (n+1)" k
" 1 205 241
(ii) LetS = Z—z Show that 144<S< Tad- [3]
o
13 (a) Let/, = J cosh” x dx for integers n > 0, where a = In 2.
0
. 3 x5!
(i) Prove that, forn > 2, nl, = o +(n-DI__,. [5]

(ii) A curve has parametric equations x = 12sinh¢ + 4 sinh? t,y=3 cosh* t,0<r<In2. Find
the length of the arc of this curve, giving your answer in the form a + bIn2 for rational
numbers a and b. (8]

(b) The circle with equation x* + (y — R)> = r*, where r < R, is rotated through one revolution about
the x-axis to form a solid of revolution called a torus. By using suitable parametric equations
for the circle, determine, in terms of 7, R and r, the surface area of this torus. [11]
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